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The problem of approximating an arbitrary operator on Hilbert space by
normal operators is studied, with special emphasis on those operators which
admit zero as a best normal approximant.

INTRODUCTION

We are going to consider a certain kind of norm-extremal problem in the
space !:!8(H) of all bounded linear operators on a fixed Hilbert space H. Let
us respectively denote the subsets of hermitian, positive, compact, and normal
operators in !:!8(H) by £'(H), f!lJ(H), et'(H) , and .ff(H). Then it is known
that each ofthe first three of these subsets is proximinal in !:!8(H); that is, every
operator in !:!8(H) has a best approximation (or nearest point) from within
£'(H), f!lJ(H), and et'(H). These results are established in [1], [5], and [2, 7],
respectively. It is therefore natural to consider the analogous question for
.ff(H): Does every operator admit a best normal approximation?

This question appears to be deeper than the others, perhaps in part
because JV(H) lacks any readily apparent geometric structure. We do know
that it is closed, nowhere dense cone in !:!8(H) [4], but unfortunately it is not
convex. Consequently, most of the usual approximation-theoretic criteria
do not apply. In addition, we can make no general assertions about metric
properties of the norm in .ff(H), since .ff(H) is a kind of macrocosm for
Banach spaces. More precisely, any separable Banach space can be iso­
metrically embedded in .ff(H) (assuming of course that H is infinite
dimensional).

In the present paper we make a modest beginning on the study of best
normal approximation. Mter establishing upper and lower bounds for the
distance between an arbitrary operator and .ff(H), we focus our attention on
those (nonzero) operators T for which this distance is maximal. Such
operators satisfy by definition the equation

II T /I = dist(T, .ff(H)):
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they shall be called here antinormal operators. The existence of such operators
is strictly an infinite dimensional phenomenon: no compact operator can
be antinormal. This is shown to follow from the result below that no invertible
operator can be antinormal. We establish a sufficient condition for an
operator to be antinormal, and note that all known examples of such
operators (namely, the nonnormal maximal partial isometries) satisfy this
condition. It is known ([6); this example is generalized below) that not every
partial isometry is antinormal but we conjecture that every subnormal
partial isometry satisfies our sufficiency condition and is thereby antinormal.

1. DISTANCE ESTIMATES

In this section we give upper and lower bounds for the distance between
an operator T and AI(H) and show that, in general, these estimates are
exact.

THEOREM 1. Let T E f!J(H). Then

sup{111 T(x)II - II T*(x)II I; II x II = I} ~ 2 dist(T, AI(H») ~ II T - T* [i.

Proof Since (T + T*)/2 is a best approximation to T from ye(H)
the right-hand side of (1) is just 2 dist(T, ;R(H)), so the right-hand inequality
follows from the inclusion £'(H) C AI(H). The other inequality is proved
(as was done in [6] for the case of partial isometries) by choosing a unit
vector x and a normal operator N, an noting

I !I T(x) II - II T*(x)111 ~ III T(x)II - II N(x)111 -:- i II N*(xW - II T*(x)11 :

~ il(T - N)(x) II + ::(N* - T*)(x)li

~ II T - Nil + 11 N* - T* II = 21: T - Nil,

Q.E.D.

To see that equality is possible in (1), we consider the operator T on a
two-dimensional Hilbert space given by the matrix (g ~). T is a partial
isometry, and T - T* = U ~) is unitary, so that II T - T* II = 1. If also
x = (~) then II T(x)II - II T*(x)11 = 1, and thus we have equality on both sides
of (1). It follows that dist(T, AI(H) = t and it may be verified that H~ ~)

is a best normal approximant to T.
Let us further remark that equality on the right in (l) will be attained

whenever Tis antinormal, since any such operator satisfies dist(T, AI(H)) ~=

dist(T, £'(H») = II T - T*[1/2. On the other hand, let T be an operator
for which equality holds on the left in (1), and assume for simplicity that
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dist(T, %(H» = 1. Then if S E £J8(K) satisfies dist(S, %(K» ::;;;; 1 for some
Hilbert space K, we have dist(S EB T, (K EB H» = 1, so that S EB T is also
an operator for which equality is attained on the left in (1).

2. ANTINORMAL OPERATORS

These operators were defined in the Introduction; they are operators having
o as a best normal approximant. This class of operators is not vacuous:
indeed, an argument given in [3, p. 271] shows that any singular norm-one
operator possessing a left inverse of norm ::;;;; 1 is antinormal. Thus any non­
unitary isometry is antinormal. The unilateral shift being an immediate
example, we see that an antinormal operator can be quasinormal (and hence
subnormal, hyponormal, etc.). Since the adjoint of an antinormal operator
is again antinormal, we may conclude that every (nonunitary) maximal
partial isometry (together with all their nonzero scalar multiples) is anti­
normal. Thus, recalling Kadison's characterization [8] of the extreme points
of the unit ball of certain operator algebras (cf. in particular [3, p. 265]), we
may assert that every extreme point of the unit ball of £J8(H) is either normal
(actually unitary) or else antinormal.

We now establish a sufficient condition for an operator T E £J8(H) to be
antinormal. The condition requires that the distance between T and the
unitary subgroup rllt(H) of £J8(H) be as large as possible. Before stating the
theorem precisely, it is convenient to isolate a portion of its proof as a lemma.
This lemma actually tells us a little more than we need to know for our
immediate purpose: however, it may have some independent interest. It
asserts that the unit ball of%(H) consists of all averages of commuting unitary
operators.

LEMMA. Let T E £J8(H) with II T /I ::;;;; 1. Then T is normal ifand only if there
exist commuting unitaries U and V such that T = (U + V)/2.

Proof. If we have any pair A, B of commuting normal operators, then
AB* = B*A, A *B = BA* (as follows, for example, by the Fuglede Theorem
[3, p. 98]), and consequently A + B is normal. If conversely we have
T E %(H) with /I Til::;;;; 1, then we have the polar decomposition T = WP,
where WE rllt(H), P E f!lJ(H), II P /I ::;;;; 1, and WP = PW. Now, as is well
known, we can write P = (WI + WI*)/2, where WI is the unitary
P + i(I - p2)1/2. Since WI is a function of P, it commutes with W. Thus,

T = WP = (WWI + WWI *)/2,

expresses T in the desired manner.
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THEOREM 2. Let T E PlJ(H) satisfy

dist(T, OlI(H)) = 1 + II Til·

Then T is antinormal.
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(2)

Proof We note that the left-hand side of (2) is always ~ the right-hand
side for any T E PlJ(H). Now let N be any normal operator. By the convexity
of the function a f-+ II T - aN II it will suffice to assume that II N II ~ :1 Til
and show that liT - Nil> II Til. By the lemma there exist (commuting)
unitaries U and V such that

N = til Til(U + V).

Suppose that II T - Nil < II Til. Then

II T - II Til UI! = II T - t I[ Til U - tIIT!1 U - t II TIl V + i II Til VII
~ I[ T - ill TII(U + V)II + til TIl II U - Vii

<21ITII·

Now if II Til> 1, then

II T - U II ~ I[ sgn(T) - U II + I[ T - sign(T)!1

< 2 + I [I Til - 1 [ = 1 + Ii Til,

contradicting (2). On the other hand, if I[ T II ~ 1, then

I[ T - UII = II T - (II Til + (1 -II TIl)) UII
< 211 Til + 11 -II Til! = 1 + II Til,

which again contradicts (2). Q.E.D.

It was shown in [3, p. 275] that the unilateral shift satisfies the condition
of Theorem 2, and the same proof applies to any other nonunitary isometry.
In this way we see again that all maximal partial isometries are either normal
(actually unitary) or else antinormal. We conjecture that in fact any (non­
normal) subnormal partial isometry satisfies the condition (2) and is thereby
antinormal. (It follows from Theorem 1 above and Theorem 5 of [6] that
any such operator is either antinormal or else at distance i- from Y(H).)
However, in general a partial isometry will not be antinormal. In fact,
the operator (~ ~) was shown in Section 1 to be at distance t from the two­
dimensional normal operators (this fact was also pointed out in [6]).

Since we incline toward the belief that every (norm-one) antinormal
operator must be a partial isometry, it is interesting to analyze this last
example to see why it should fail to be antinormal. Two reasons appear; the



416 RICHARD B. HOLMES

(3)

operator is compact (see Theorem 3), and the final space of the operator is
disjoint from its initial space. We now show that any partial isometry
satisfying a slightly strengthened form of this condition not only fails to be
antinormal, but actually possesses a better Hermitian approximant than O.

EXAMPLE. Let T be a partial isometry whose final space F is disjoint
from and makes a positive angle with its initial space M. We are going to
show that II T - T* II < 2. This will show that dist(T, £(H)) < 1 = II Til;
that is, there is actually a Hermitian operator within a distance less than unity
from T. Let II x II = l; then

II T(x) - T*(x)11 = II TPM(x) - T*Pp(x)II
~ II PM(x)/I + II Pix)/I,

where PM and P p are the orthogonal projectors onto the indicated subspaces.
Now choose 8 > 0 so that

v2 > ex = 2 sin t -1= (M, F) - (28)1/2 > O.

Suppose that II PM(x)II > 1 - 8. Then there is a unit vector mE M such
that re<x, m) > 1 - o. Hence /I x ~ m 112 < 20. Now for any unit vector
fEFwe have

II m - fll ? 2 sin t <t (M, F)

(see, for example, [9, p. 28]). Therefore,

II x - f/l ? /I m - fll - II x - mil
? 2 sin t -1= (M, F) - (20)1/2 = IX,

and so from

/I x - sgn(Pp(x))1/2 = II x - Pp(x)112 + II Pp(x) - sgn(Pp(x))/l2

and

1 = II Pix)/l2 + II x - Pp(x)112 = /I Pix)112 + dist(x, F)2,

we obtain

Thus we see from (3) that

/I T - T* II = sup II T(x) - T*(x)/I
1I"'1I~1

~ max{2 - 0, 2 - t ex2} < 2,

Q.E.D.

What is required of an operator in order that it be antinormal? It may be
necessary that Tbe a partial isometry (as suggested previously) and/or satisfy
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the condition of Theorem 2. While unable at present to fully characterize
antinormal operators, we show next certain operators can be excluded from
consideration.

THEOREM 3. Let T be an invertible operator in fJ9(H). Then with
I T I = (T*T)1/2,

dist(T, JV(H» ~ ! diam a(IT i),

so that T is not antinormal. Consequently, no compact operator can be anti­
normal.

Proof If T is invertible, we have the polar decomposition T = U! T [,
with U unitary. Let A = sup{ex; ex E a(1 Tin, p- = inf{ex; ex EO: T I)}. Then

dist(T, JV(H») ~ II T - !(A + p-) U II = Ii I T i - teA + p-) Iii ~ t('\ -

Now assume that Tis compact with II Til = 1, say. Then there is a sequence
of finite rank operators Tn with II Tn II = 1 and II Tn - Til -->- O. It will suffice
to show that dist(Tn , JV(H») ~ t, for all n. Now each Tn is the direct sum
of an operator Tn' with a finite dimensional domain, H n say, and a zero­
operator. It is easy to see that dist(Tn , JV(H) ~ dist(Tn',

But in fJ9(Hn), there is a sequence Sm,n of norm-one invertible operators
with limit Tn'. By (4), dist(Sm,n, %(Hn)) ~ ! diam(1 Sm,n l) ~ t, whence
dist(Tn ', JV(Hn )) ~ t also.

Note added in proof Since this paper was submitted, a manuscript entitled "Proximinal
sets of operators" by D. D. Rogers has appeared, wherein it is shown, among other things,
that .Iv(H) and OJt(H) are not proximinal unless, of course, H is finite dimensional.
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